Metabolism and metabolic effects of 8-azainosine and 8-azaadenosine

Cancer Res. 1976 Nov;36(11 Pt 1):3917-23.

Abstract

8-Azainosine (8-aza-HR) is of interest because of its activity against experimental tumors. Metabolic studies in cell cultures were performed with 8-aza-HR and with the structurally related nucleoside, 8-azaadenosine (9-beta-D-ribofuranosyl-8-azaadenine) (8-aza-AR), which has a lower degree of antitumor activity than does 8-aza-HR. In H. Ep. 2 cells and in Ca755 cells, both 14C-labeled nucleosides were metabolized to nucleotides of 8-azaadenine (8-aza-A) and 8-azaguanine (8-aza-G) and incorporated into polynucleotides as 8-aza-A and 8-aza-G. 8-Aza HR was incorporated primarily as 8-aza-G, whereas 8-aza-AR was incorporated about equally as 8-aza-A and 8-aza-G. In H. Ep. 2 cells, the extent of incorporation of 8-aza-HR as 8-aza-G was about one-half that found when [14C]-8-aza-G was the precursor. In the H. Ep. 2/FA/FAR cell line, 8-aza-AR and 8-aza-HR were metabolized similarly, in that both were incorporated into polynucleotides principally as 8-aza-G; apparently, in this cell line which is deficient in adenosine kinase and adenine phosphoribosyltransferase, 8-aza-AR is metabolized by conversion to 8-aza-HR. A cell line (H. Ep 2/8-aza HR), which was resistant to 8-aza-HR but sensitive to 8-aza-AR and which retained hypoxanthine (guanine)-phosphoribosyltransferase activity, metabolized 8-aza-HR to only a small extent. However, in this cell-line, 8-aza-AR was more extensively metabolized and was incorporated primarily as 8-aza-A. The failure of these cells to convert 8-aza-AR or 8-aza-HR to 8-aza-G indicates that the basis for resistance may be a change in the substrate specificities of the enzymes of guanosine monophosphate synthesis such that these cells no longer effectively convert 8-azainosine monophosphate to 8-azaguanosine monophosphate. 8-Aza-AR was a potent inhibitor of purine synthesis de novo, but 8-aza-HR, at concentrations much higher than the inhibitory concentration of 8-aza-AR, did not inhibit this process. In H. Ep. 2 cells, 8-aza-HR blocked the conversion of orotic acid to uridine nucleotides and caused an accumulation of orotidine. This inhibition of pyrimidine biosynthesis apparently does not contribute significantly to the cytotoxicity of 8-aza-HR because uridine provided no degree of reversal of its inhibition of the growth of cell cultures.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / metabolism
  • Adenosine / pharmacology
  • Animals
  • Azaguanine / metabolism
  • Cell Line
  • Chromatography, Thin Layer
  • Humans
  • In Vitro Techniques
  • Inosine / analogs & derivatives*
  • Inosine / pharmacology
  • Mice
  • Orotic Acid / metabolism
  • Polynucleotides / biosynthesis
  • Purines / biosynthesis
  • Pyrimidine Nucleotides / biosynthesis
  • Thymidine / metabolism
  • Uridine / metabolism

Substances

  • Polynucleotides
  • Purines
  • Pyrimidine Nucleotides
  • Inosine
  • Orotic Acid
  • Adenosine
  • Azaguanine
  • Thymidine
  • Uridine